86 research outputs found

    Inhibitory effect of a short Z-DNA forming sequence on transcription elongation by T7 RNA polymerase

    Get PDF
    DNA sequences capable of forming unusual secondary structures can be a source of genomic instability. In some cases that instability might be affected by transcription, as recently shown for the Z-DNA forming sequence (CG)14, which causes genomic instability both in mammalian cells and in bacteria, and this effect increases with its transcription. We have investigated the effect of this (CG)14 sequence on transcription with T7 RNA polymerase in vitro. We detected partial transcription blockage within the sequence; the blockage increased with negative supercoiling of the template DNA. This effect was not observed in a control self-complementary sequence of identical length and base composition as the (CG)14 sequence, when the purine–pyrimidine alternation required for Z-DNA formation was disrupted. These findings suggest that the inhibitory effect on T7 transcription results from Z-DNA formation in the (CG)14 sequence rather than from an effect of the sequence composition or from hairpin formation in either the DNA or the RNA product

    DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability

    Get PDF
    The abnormal number of repeats found in triplet repeat diseases arises from β€˜repeat instability’, in which the repetitive section of DNA is subject to a change in copy number. Recent studies implicate transcription in a mechanism for repeat instability proposed to involve RNA polymerase II (RNAPII) arrest caused by a CTG slip-out, triggering transcription-coupled repair (TCR), futile cycles of which may lead to repeat expansion or contraction. In the present study, we use defined DNA constructs to directly test whether the structures formed by CAG and CTG repeat slip-outs can cause transcription arrest in vitro. We found that a slip-out of (CAG)20 or (CTG)20 repeats on either strand causes RNAPII arrest in HeLa cell nuclear extracts. Perfect hairpins and loops on either strand also cause RNAPII arrest. These findings are consistent with a transcription-induced repeat instability model in which transcription arrest in mammalian cells may initiate a β€˜gratuitous’ TCR event leading to a change in repeat copy number. An understanding of the underlying mechanism of repeat instability could lead to intervention to slow down expansion and delay the onset of many neurodegenerative diseases in which triplet repeat expansion is implicated

    Role of RecA and the SOS Response in Thymineless Death in Escherichia coli

    Get PDF
    Thymineless death (TLD) is a classic and enigmatic phenomenon, documented in bacterial, yeast, and human cells, whereby cells lose viability rapidly when deprived of thymine. Despite its being the essential mode of action of important chemotherapeutic agents, and despite having been studied extensively for decades, the basic mechanisms of TLD have remained elusive. In Escherichia coli, several proteins involved in homologous recombination (HR) are required for TLD, however, surprisingly, RecA, the central HR protein and activator of the SOS DNA–damage response was reported not to be. We demonstrate that RecA and the SOS response are required for a substantial fraction of TLD. We show that some of the Rec proteins implicated previously promote TLD via facilitating activation of the SOS response and that, of the roughly 40 proteins upregulated by SOS, SulA, an SOS–inducible inhibitor of cell division, accounts for most or all of how SOS causes TLD. The data imply that much of TLD results from an irreversible cell-cycle checkpoint due to blocked cell division. FISH analyses of the DNA in cells undergoing TLD reveal blocked replication and apparent DNA loss with the region near the replication origin underrepresented initially and the region near the terminus lost later. Models implicating formation of single-strand DNA at blocked replication forks, a SulA-blocked cell cycle, and RecQ/RecJ-catalyzed DNA degradation and HR are discussed. The data predict the importance of DNA damage-response and HR networks to TLD and chemotherapy resistance in humans

    Mutability and mutational spectrum of chromosome transmission fidelity genes

    Get PDF
    It has been more than two decades since the original chromosome transmission fidelity (Ctf) screen of Saccharomyces cerevisiae was published. Since that time the spectrum of mutations known to cause Ctf and, more generally, chromosome instability (CIN) has expanded dramatically as a result of systematic screens across yeast mutant arrays. Here we describe a comprehensive summary of the original Ctf genetic screen and the cloning of the remaining complementation groups as efforts to expand our knowledge of the CIN gene repertoire and its mutability in a model eukaryote. At the time of the original screen, it was impossible to predict either the genes and processes that would be overrepresented in a pool of random mutants displaying a Ctf phenotype or what the entire set of genes potentially mutable to Ctf would be. We show that in a collection of 136 randomly selected Ctf mutants, >65% of mutants map to 13 genes, 12 of which are involved in sister chromatid cohesion and/or kinetochore function. Extensive screening of systematic mutant collections has shown that ~350 genes with functions as diverse as RNA processing and proteasomal activity mutate to cause a Ctf phenotype and at least 692 genes are required for faithful chromosome segregation. The enrichment of random Ctf alleles in only 13 of ~350 possible Ctf genes suggests that these genes are more easily mutable to cause genome instability than the others. These observations inform our understanding of recurring CIN mutations in human cancers where presumably random mutations are responsible for initiating the frequently observed CIN phenotype of tumors

    Signatures of mutational processes in human cancer.

    Get PDF
    All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy

    Environmental and Molecular Mutagenesis Meeting Report Assessing Human Germ-Cell Mutagenesis in the Post-Genome Era: A Celebration of the Legacy of William Lawson (Bill) Russell

    Get PDF
    ABSTRACT Although numerous germ-cell mutagens have been identified in animal model systems, to date, no human germ-cell mutagens have been confirmed. Because the genomic integrity of our germ cells is essential for the continuation of the human species, a resolution of this enduring conundrum is needed. To facilitate such a resolution, we organized a workshop at The Jackson Laboratory in Bar Harbor, Maine on September [28][29][30] 2004. This interactive workshop brought together scientists from a wide range of disciplines to assess the applicability of emerging molecular methods for genomic analysis to the field of human germ-cell mutagenesis. Participants recommended that focused, coordinated human germ-cell mutation studies be conducted in relation to important societal exposures. Because cancer survivors represent a unique cohort with well-defined exposures, there was a consensus that studies should be designed to assess the mutational impact on children born to parents who had received certain types of mutagenic cancer chemotherapy prior to conceiving their children. Within this high-risk cohort, parents and children could be evaluated for inherited changes in (a) gene sequences and chromosomal structure, (b) repeat sequences and minisatellite regions, and (c) global gene expression and chromatin. Participants also recommended studies to examine trans-generational effects in humans involving mechanisms such as changes in imprinting and methylation patterns, expansion of nucleotide repeats, or induction of mitochondrial DNA mutations. Workshop participants advocated establishment of a bio-bank of human tissue samples that could be used to conduct a multiple-endpoint, comprehensive, and collaborative effort to detect exposure-induced heritable alterations in the human genome. Appropriate animal models of human germ-cell mutagenesis should be used in parallel with human studies to provide insights into the mechanisms of mammalian germ-cell mutagenesis. Finally, participants recommended that 4 scientific specialty groups be convened to address specific questions regarding the potential germ-cell mutagenicity of environmental, occupational, and lifestyle exposures. Strong support from relevant funding agencies and engagement of scientists outside the fields of genomics and germ-cell mutagenesis will be required to launch a full-scale assault on some of the most pressing and enduring questions in environmental mutagenesis: Do human germ-cell mutagens exist, what risk do they pose to future generations, and are some parents at higher risk than others for acquiring and transmitting germ-cell mutations?

    Molecules to Living Cell

    No full text
    v;ill.;340hal.;35c

    A Balanced Perspective on Unbalanced Growth and Thymineless Death

    Get PDF
    The early history of the esoteric phenomenon of thymineless death (TLD) is recounted, from the pioneering discovery by Seymour Cohen and Hazel Barner, through my graduate studies at Yale and postdoctoral research in Copenhagen. My principal contribution was the discovery that restricted synthesis of protein and RNA permits cultures of Escherichia coli to complete their DNA replication cycles without initiating new ones, and that cells held in this physiological state are immune to the lethality of thymine deprivation; unbalanced growth is not the fundamental cause of TLD. The successful synchronization of the DNA replication cycle contributed to formulation of the replicon concept. Studies at Stanford revealed a specific requirement for transcription and led to the discovery of a TLD-resistant mutant in a new gene, termed recQ, with important homologs in humans and most other organisms. The lessons learned from research on TLD underscore the value of basic research in bacterial systems that can have profound implications for human health
    • …
    corecore